

从线的端头 2 mm

技术数据

0°C 时电阻值((R ₀)	20 Ω			
温度系数 (0℃~+100℃)		3.85 ·	3.85 · 10 ⁻³ K ⁻¹		
公 差等 级 依据DIN EN 60751			• F 0,3 (-50°C - +500°C) • F 0,6 (-50°C - +600°C)		
基于引线材料的工作温度范围					
银钯5, 镀金镇	线 (NiAu)	-50 °C ~ +400 °C			
镀铂金镍线(NiPt)		-50 °C ~ +500 °C (短时间可到 +550 °C)			
金钯5 , 铂金		-50 °C ~ +600 °C			
25°C时的测量电流(直流)		1.0 mA			
25°C时最大允许峰值电流 (直流)		3.0 mA			
绝缘电阻		> 10 MΩ			
0°C时自发热		< 0.5 K / mW			
热响应时间					
流动的液体 (v = 0.2 m/s)		$T_{0.5} = 0.07s$, $T_{0.9} = 0.2s$			
流动的气体 (v = 1 m/s)		T _{0.5} = 4 s, T _{0.9} = 10 s			
电阻值 [Ω]					
温度 t	公差级别				
	F 0,3 [Ω]		F 0,6 [Ω]		
0 °C	20 ± 0.023		20 ± 0.023		
+100 °C	27.702 ± 0.061		27.702 ± 0.121		

最大电阻变化	< 0.1 %					
标准	DIN EN 60751					
型 号	薄膜传感器					
技术: 先进的薄膜技术 (带有结构化铂层,覆盖有钝化层的陶瓷载体)						
操作条件: 无保护的应用仅在干燥环境中没有任何污染						
符合性: 2011/65 / EU限制使用有害物质指令 (RoHS)						
尺寸 [mm]						
1 ± 0.2						
1100	_					
4 ± 0.2	Ø d					
F S						

AgPd5

15 ± 1

0,25

NiAu NiPt

15 ± 1 10 ± 1

0,2 0,2

AuPd5 Pt

10 ± 1 7 ± 1

0.25 0.2

引线

I [mm]

d [mm]

功能参数

依据 DIN EN 60751

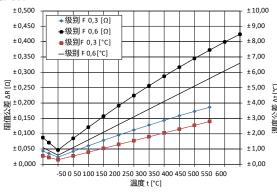


图1: Pt20的电阻和温度公差 (请注意-工作温度范围取决于引线材料!)

温度范围 -50°C~0°C:

 $R_t = R_o \cdot (1 + A \cdot t + B \cdot t^2 + C \cdot (t - 100 °C) \cdot t^3)$

温度范围 0℃~+600℃:

 $R_t = R_o \cdot (1 + A \cdot t + B \cdot t^2)$

公差级别依据 DIN EN 60751:

级别 F 0,3 (-50°C - +500°C): Δt = ± (0.3 + 0.005 · | t|) 级别 F 0,6 (-50°C - +600°C): Δt = ± (0.6 + 0.01 · | t|)

从而:

H1

[mm]

[mm]

Rt 测量点

250 h时

 R_t ... 在温度 t 时电阻值 $[\Omega]$ R_s ... 在0°C时电阻值 $[\Omega]$

t ... 温度 [°C]

Δt ... 在 t [°C] 时容许温度偏差

Pt20 FMC

1± 0.2

0.4

Pt20 FMC

2x2.3x1.3

1.3 ± 0.2

0.65

A = $3.9083 \cdot 10^{-3} \, ^{\circ}\text{C}^{-1}$ B = $-5.775 \cdot 10^{-7} \, ^{\circ}\text{C}^{-2}$

 $C = -4.183 \cdot 10^{-12} \, ^{\circ}C^{-4}$

应用领域

- 工业电子
- 楼宇自动化
- 汽车电子
- 能源与环境工程
- 安全和医疗工程

订购示例

型 号	精度等级	引线 (ø d x l [mm] 引线材料)	工作温度范围 [°C]
Pt20 FMC 2x2.3x1.3	F 0,3	0.25x15 AgPd5	-50/+400
Pt20 FMC 2x2.3x1.0	F 0,6	0.2x10 NiPt	-50/+500

其他等级的精度和导线长度可根据要求提供。

