

M 213

M series PRTDs are designed for large volume applications where long term stability, interchangeability and accuracy over a large temperature range are vital. Typical applications are Automotive, White goods, HVAC, Energy management, Medical and Industrial equipment.

Nominal Resistance R0	Tolerance DIN EN 60751 1996-07	Tolerance DIN EN 60751 2009-05	Order Number Plastic Box
100 Ohm at 0°C	Class 1/3 B Class A Class B	F 0.1 F 0.15 F 0.3	32 207 692 32 207 691 32 207 690
1000 Ohm at 0°C	Class B	F 0.3	32 207 695

The measuring point for the nominal resistance is defined at 8mm from the end of the sensor body.

Specification DIN EN 60751 (according to IEC 751)

Temperature range -70°C to +500°C (continuous operation)

(temporary use to 550 °C possible)
Tolerance Class B: -70°C to

Tolerance Class B: -70°C to +500°C
Tolerance Class A: -50°C to +300°C
Tolerance Class 1/3 B: 0°C to +150°C

Temperature coefficient TC = 3850 ppm/K

Leads Pt clad Ni- wire

Recommended connection technology:

Welding, Crimping and Brazing

Lead lengths (L) 10mm ±1mm

Long-term stability max. R₀-drift 0.04% after 1000h at 500°C

Vibration resistance at least 40g acceleration at 10 to 2000 Hz,

depends on installation

Shock resistance at least 100g acceleration with 8ms half sine

wave, depends on installation

Environmental conditions unhoused for dry environments only

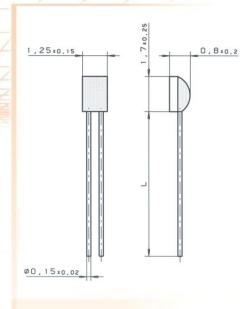
Insulation resistance > 100 M Ω at 20°C; > 2 M Ω at 500°C

Self heating 0.6 K/mW at 0°C

Response time water current (v= 0.4m/s): $t_{0.5} = 0.04$ s

 $\begin{array}{c} t_{0.9} = 0.12s \\ \text{air stream (v= 2m/s):} \\ t_{0.5} = 2.2s \end{array}$

 $t_{0.9} = 7.0s$


Measuring current 100Ω : 0.3 to 1.0 mA

1000Ω: 0.1 to 0.3 mA

(self heating has to be considered)

Note Other tolerances, values of resistance and wire

lengths are available on request.

M 220

M series PRTDs are designed for large volume applications where long term stability, interchangeability and accuracy over a large temperature range are vital. Typical applications are Automotive, White goods, HVAC, Energy management, Medical and Industrial equipment.

Nominal Resistance R0	Tolerance DIN EN 60751 1996-07	Tolerance DIN EN 60751 2009-05	Order Number Plastic Bag	Order Number Blister reel
100 Ohm at 0°C	Class 1/3 B Class A Class B	F 0.1 F 0.15 F 0.3	32 208 715 32 208 714	32 208 466 32 208 465 32 208 440

The measuring point for the nominal resistance is defined at 8mm from the end of the sensor body.

DIN EN 60751 (according to IEC 751) **Specification**

Temperature range -70°C to +500°C (continuous operation)

(temporary use to 550 °C possible)

Tolerance Class B: -70°C to +500°C Tolerance Class A: -50°C to +300°C Tolerance Class 1/3 B: 0°C to +150°C

Temperature coefficient TCR = 3850 ppm/K

Leads Pt clad Ni- wire

Recommend connection technology:

Welding, Crimping and Brazing

Lead lengths (L) 10mm ±1mm

Long-term stability max. R₀-drift 0.04% after 1000h at 500°C

Vibration resistance at least 40g acceleration at 10 to 2000 Hz,

depends on installation

Shock resistance at least 100g acceleration with 8ms half sine

wave, depends on installation

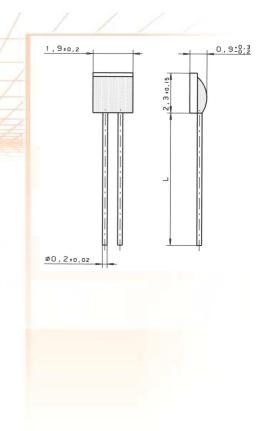
Environmental conditions unhoused for dry environments only

> 100 M Ω at 20°C; > 2 M Ω at 500°C Insulation resistance

Self heating 0.4 K/mW at 0°C

 $t_{0.5} = 0.05s$ Response time water current (v= 0.4m/s):

air stream (v= 2m/s):


 $t_{0.9} = 0.15s$ $t_{0.5} = 3.0s$ $t_{0.9} = 10.0s$

Measuring current 100Ω: 0.3 to 1.0mA

(self heating has to be considered)

Note Other tolerances, values of resistance and wire

lengths are available on request.

0,9:8:3

Platinum Resistance Temperature Detector

M-series PRTDs are designed for large volume applications where long term stability, interchangeability and accuracy over a large temperature range are vital. Typical applications are Automotive, White goods, HVAC, Energy management, Medical and Industrial equipment.

Nominal Resistance R0	Toler ance DIN EN 60751 1996-07	Tolerance DIN EN 60751 2009-05	Order Number Plastic Bag
100 Ohm at 0℃	Class 1/3 B	F 0.1	32 208 551
	Class A	F 0.15	32 208 550
	Class B	F 0.3	32 208 548
500 Ohm at 0℃	Class B	F 0.3	32 208 706
1000 Ohm at 0℃	Class 1/3 B	F 0.1	32 208 707
	Class A	F 0.15	32 208 572
	Class B	F 0.3	32 208 571

The measuring point for the nominal resistance is defined at 8mm from the end of the sensor body.

Specification DIN EN 60751 (according to IEC 751)

Temperature range -70℃ to +500℃ (continuous operation)

(temporary use to 550℃ possible)

Tolerance Class B: -70℃ to +500℃ Tolerance Class A: -50℃ to +300℃ Tolerance Class 1/3 B: 0℃ to +150℃

Temperature coefficient TCR = 3850 ppm/K

Leads Pt clad Ni- wire

Recommend connection technology: Welding, Crimping and Brazing

Lead lengths (L) 10mm ±1mm

Long-term stability max. R₀-drift 0.04% after 1000h at 500℃

Vibration resistance at least 40g acceleration at 10 to 2000 Hz,

depends on installation

Shock resistance at least 100g acceleration with 8ms half sine

wave, depends on installation

Environmental conditions unhoused for dry environments only

Insulation resistance > 100 M Ω at 20°C; > 2 M Ω at 500°C

Self heating 0.4 K/mW at 0℃

Response time water current (v= 0.4m/s): $t_{0.5} = 0.05s$ $t_{0.9} = 0.15s$

air stream (v= 2m/s): $t_{0.5} = 3.0s$ $t_{0.9} = 10.0s$

Measuring current 100Ω : 0.3 to 1.0mA

 500Ω : 0.1 to 0.7mA 1000Ω: 0.1 to 0.3mA

(self heating has to be considered)

Note Other tolerances, values of resistance and wire

lengths are available on request.

We reserve the right to make alterations and technical data printed. All technical data serves as a guideline and does not guarantee particular properties to any products.

2,1±0,2

Platinum temperature sensor in thin-film technology

M 310

M-series platinum temperature sensors are characterized by long-term stability, excellent precision over a wide temperature range and compatibility. They are used particularly for applications with high consumption volumes, typically in the automotive, white goods, HVAC and energy generation industries as well as in medical and industrial appliances and machinery.

Nominal Resistance R0	Tolerance DIN EN 60751 1996-07	Tolerance DIN EN 60751 2009-05	Order Number Plastic Box	Order Number Plastic Bag
100 Ohm at 0°C	Class B	F 0.3	32 208 721	50 142 52
1000 Ohm at 0°C	Class B	F 0.3	32 208 723	50 142 53
100 Ohm at 0°C	Class A	F 0,15	32 208 725	50 142 54
1000 Ohm at 0°C	Class A	F 0,15	32 208 727	50 142 55

The measuring point for the nominal resistance is defined at 8mm from the end of the sensor body.

Specification **DIN EN 60751**

-70°C to +500°C (continuous operation) Temperature range

(temporary use to 550°C possible) Tolerance Class B: -70°C up to +500°C Tolerance Class A: -50°C up to +300°C

Temperature coefficient TCR = 3850 ppm/K

Leads Pt clad Ni- wire

> Recommend connection technology: Welding, Crimping and Brazing

Lead lengths (L) 10mm ±1mm

Long-term stability Max. R₀ drift 0.04% after 1000h at 500°C

Vibration resistance At least 40g acceleration at 10 to 2000 Hz,

depends on installation

Shock resistance At least 100g acceleration with 8 ms half sine

wave, depends on installation

Ambient conditions Use unprotected only in dry environments

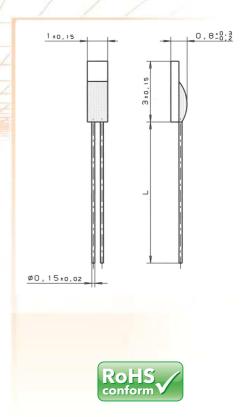
Insulation resistance > 100 M Ω at 20°C; > 2 M Ω at 500°C

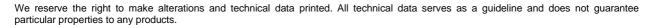
Self heating 0.4 K/mW at 0°C

Response time Water current (v= 0.4m/s): $t_{0.5} = 0.04s$

 $t_{0.9} = 0.12s$ Air flow (v= 2m/s): $t_{0.5} = 2.5s$

 $t_{0.9} = 8.0s$


Measuring current 100Ω: 0.3 to 1.0 mA


1000Ω: 0.1 to 0.3 mA

(self heating has to be considered)

Note Other tolerances, values of resistance and wire

lengths are available on request.

Platinum temperature sensor in thin-film technology

M 416

M-series platinum temperature sensors are characterized by long-term stability, excellent precision over a wide temperature range and compatibility. They are used particularly for applications with high consumption volumes, typically in the automotive, white goods, HVAC and energy generation industries as well as in medical and industrial appliances and machinery.

Nominal Resistance R0	Tolerance DIN EN 60751 1996-07	Tolerance DIN EN 60751 2009-05	Order Number Plastic Bag	Order Number Blister reel
100 Ohm at 0°C	Class 1/3 B	F 0.1	32 208 217	32 208 701
	Class A	F 0.15	32 208 216	32 208 279
	Class B	F 0.3	32 208 213	32 208 278

The measuring point for the nominal resistance is defined at 8mm from the end of the sensor body.

Specification DIN EN 60751

Temperature range -70°C to +500°C (continuous operation)

(temporary use to 550°C possible)

Tolerance Class B: -70°C to +500°C Tolerance Class A: -50°C to +300°C Tolerance Class 1/3 B: 0°C to +150°C

Temperature coefficient TC = 3850 ppm/K

Leads Pt clad Ni- wire

Recommend connection technology: Welding, Crimping and Brazing

Lead lengths (L) 10mm ±1mm

Long-term stability Max. R₀ drift 0.04% after 1000h at 500°C

Vibration resistance At least 40g acceleration at 10 to 2000 Hz,

depends on installation

Shock resistance At least 100g acceleration with 8ms half sine

wave, depends on installation

Ambient conditions

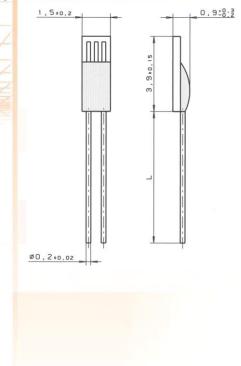
Use unprotected only in dry environments

Insulation resistance > 100 M Ω at 20°C; > 2 M Ω at 500°C

Self heating 0.4 K/mW at 0°C

Response time Water current (v= 0.4m/s): $t_{0.5} = 0.06$ s

Air flow (v=2m/s):


 $t_{0.9} = 0.18s$ $t_{0.5} = 3.1s$ $t_{0.9} = 10.5s$

Measuring current 100Ω : 0.3 to 1.0mA

(self heating has to be considered)

Note Other tolerances, values of resistance and wire

lengths are available on request.

M 422

M series PRTDs are especially robust and are designed for large volume applications where long term stability, interchangeability and accuracy over a large temperature range are vital. Typical applications are Automotive, White Goods, HVAC, Energy Management, Medical and Industrial Equipment.

Nominal Resistance R0	Tolerance DIN EN 60751 1996-07	Tolerance DIN EN 60751 2009-05	Order Number Plastic Bag	Order Number Blister reel
100 Ohm at 0°C	Class 1/3 B	F 0.1	32 208 500	32 208 522
	Class A	F 0.15	32 208 498	32 208 521
	Class B	F 0.3	32 208 392	32 208 520
500 Ohm at 0°C	Class 1/3 B	F 0.1	32 208 502	32 208 525
	Class A	F 0.15	32 208 501	32 208 524
	Class B	F 0.3	32 208 414	32 208 523
1000 Ohm at 0°C	Class 1/3 B Class A Class B	F 0.1 F 0.15 F 0.3	32 208 537 32 208 503 32 208 499	32 208 527 32 208 526

The measuring point for the nominal resistance is defined at 8mm from the end of the sensor body.

Specification DIN EN 60751 (according to IEC 751)

Temperature range -70°C to +500°C (continuous operation)

(temporary use to 550°C possible)
Tolerance Class B: -70°C to +500°C
Tolerance Class A: -50°C to +300°C
Tolerance Class 1/3 B: 0°C to +150°C

Temperature coefficient TC = 3850 ppm/K; 3750 ppm/K available

on request

Leads Pt clad Ni- wire

Recommend connection technology: Welding, Crimping and Brazing

Lead lengths (L) 10mm ±1mm

Longterm stability max. R₀-drift 0.04% after 1000 h at 500 °C

Vibration resistance at least 40g acceleration at 10 to 2000 Hz,

depends on installation

Shock resistance at least 100g acceleration with 8ms half sine

wave, depends on installation

Environmental conditions unhoused for dry environments only

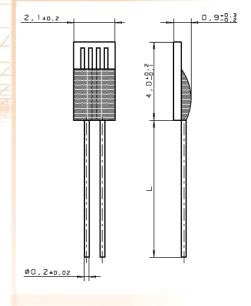
Insulation resistance $> 100 \text{ M}\Omega \text{ at } 20^{\circ}\text{C}; > 2 \text{ M}\Omega \text{ at } 500^{\circ}\text{C}$

Self heating 0.3 K/mW at 0°C

Measuring current

Response time water current (v= 0.4m/s): $t_{0.5} = 0.07$ s

 $t_{0.9} = 0.20s$ $t_{0.5} = 3.2s$


air stream (v= 2m/s): $t_{0.5} = 3.2s$ $t_{0.9} = 11s$

> 100 Ω : 0.3 to 1.0mA 500 Ω : 0.1 to 0.7mA 1000 Ω : 0.1 to 0.3mA

(self heating has to be considered)

Note Other tolerances, values of resistance and wire lengths are

available on request.

M 620

M series PRTDs are designed for large volume applications where long term stability, interchangeability and accuracy over a large temperature range are vital. Due to the high resistance values of 1000Ω and 2000Ω the signal gain is excellent. Typical applications are found in Automotive, White goods, HVAC, Medical and Industrial equipment.

Nominal Resistance R0	Tolerance DIN EN 60751 1996-07	Tolerance DIN EN 60751 2009-05	Order Number Plastic Bag
2000 Ohm at 0°C	Class B	F 0.3	32 208 541

The measuring point for the nominal resistance is defined at 8mm from the end of the sensor body.

Spezification DIN EN 60751 (according to IEC 751)

Temperature range -70°C to +500°C (continuous operation)

(temporary use to 550°C possible)
Tolerance Class B: -70°C to +500°C

Temperature coefficient

TCR = 3850 ppm/K

Leads

Pt clad Ni- wire

Recommend connection technology:
Welding, Crimping and Brazing

Lead lengths (L) 10mm ±1mm

Longterm stability max. R₀-drift 0.04% after 1000h at 500 °C

Vibration resistance at least 40g acceleration at 10 to 2000 Hz,

depends on installation

Shock resistance at least 100g acceleration with 8ms half sine

wave, depends on installation

Environmental conditions unhoused for dry environments only

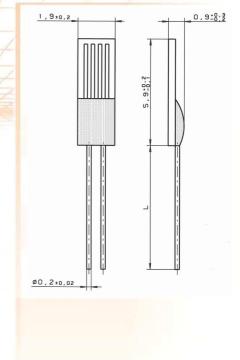
Insulation resistance > 100 M Ω at 20°C; > 2 M Ω at 500°C

Self heating 0.3 K/mW at 0°C

Response time water current (v= 0.4m/s): $t_{0.5} = 0.08$ s

 $t_{0.9} = 0.25s$

air stream (v= 2m/s): $t_{0.5} = 3.7s$


 $t_{0.9} = 11.5s$

Measuring current 2000 Ω : 0.1 to 0,3mA

(self heating has to be considered)

Note Other tolerances, values of resistance and wire

lengths are available on request.

M 1020

M series PRTDs are designed for large volume applications where long term stability, interchangeability and accuracy over a large temperature range are vital. Typical applications are Automotive, White Goods, HVAC, Energy Management, Medical and Industrial equipment.

Nominal Resistance R0	Tolerance DIN EN 60751 1996-07	Tolerance DIN EN 60751 2009-05	Order Number Plastic Bag	Order Number Blister reel
100 Ohm at 0°C	Class 1/3 B Class A Class B	F 0.1 F 0.15 F 0.3	32 208 180	32 208 428 32 208 429 32 208 280
500 Ohm at 0°C	Class B	F 0.3	32 208 201	32 208 285
1000 Ohm at 0°C	Class 1/3 B Class A Class B	F 0.1 F 0.15 F 0.3	32 208 191	32 208 483 32 208 439 32 208 286

The measuring point for the nominal resistance is defined at 8mm from the end of the sensor body.

Specification DIN EN 60751 (according to IEC 751)

Temperature range -70°C to +500°C (continuous operation)

(temporary use to 550°C possible)

Tolerance Class B: -70°C to +500°C Tolerance Class A: -50°C to +300°C Tolerance Class 1/3 DIN: 0°C to +150°C

Temperature coefficient TC = 3850 ppm/K

Leads Pt clad Ni- wire

Recommend connection technology:

Welding, Crimping and Brazing

Lead lengths (L) 10mm ±1 mm

Long-term stability max. R₀-drift 0.04% after 1000h at 500°C

Vibration resistance at least 40g acceleration at 10 to 2000 Hz,

depends on installation

Shock resistance at least 100g acceleration with 8ms half sine wave,

depends on installation

Environmental conditions unhoused for dry environments only

Insulation resistance > 100 M Ω at 20°C; > 2 M Ω at 500°C

Self heating 0.2 K/mW at 0°C

Response time water current (v= 0.4m/s): $t_{0.5} = 0.10$ s

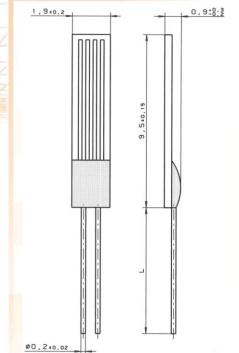
 $t_{0.9} = 0.30s$

air stream (v= 2m/s): $t_{0.5} = 4.0s$

 $t_{0.9} = 12.0s$

Measuring current 100 Ω : 0.3 to 1.0mA

500 Ω : 0.1 to 0.7mA 1000 Ω : 0.1 to 0.3mA


(self heating has to be considered)

Note Other tolerances, values of resistance and wire lengths are

available on request.

We reserve the right to make alterations and technical data printed. All technical data serves as a guideline and does not guarantee particular properties to any products.

铂基传感

MN 222

MN- series PRTDs are designed for large volume applications where long term stability, interchangeability and accuracy over a large temperature range are vital. Typical applications are Automotive, White Goods, HVAC, Energy management, Medical and Industrial equipment.

Nominal Resistance R0	Toler ance DIN EN 60751 1996-07	Tolerance DIN EN 60751 2009-05	Order Number Plastic Bag
100 Ohm at 0°C	Class A	F 0.15	32 207 759
	Class B	F 0.3	32 207 758
	Class 2B	F 0.6	32 207 757
500 Ohm at 0°C	Class B	F 0.3	32 207 756
	Class 2B	F 0.6	32 207 755
1000 Ohm at 0°C	Class A	F 0.15	32 207 754
	Class B	F 0.3	32 207 753
	Class 2B	F 0.6	32 207 751

The measuring point for the nominal resistance is defined at 8mm from the end of the sensor body.

Specification DIN EN 60751 (according to IEC 751) Temperature range Tolerance Class A: -50°C to +300°C Tolerance Class B: -70°C to +500°C 0,9:8:3 2,1±0,2 Tolerance Class 2B: -70°C to +500°C (temporary use at Cl. B and 2B to 550°C possible) Temperature coefficient TCR = 3850 ppm/K Leads Ni- wire Recommend connection technology: Welding, crimping and Brazing Lead lengths (L) 10mm ±1mm **Ambient conditions** Unhoused for dry environments only > 100 M Ω at 20°C; > 2 M Ω at 500°C Insulation resistance Self heating 0.4 K/mW at 0°C Ø0,22±0,02 Response time water current (v= 0.4m/s): $t_{0.5} = 0.05s$ $t_{0.9} = 0.15s$ $t_{0.5} = 3.0s$ air stream (v= 2m/s): $t_{0.9} = 10.0s$ Measuring current $100\Omega:0.3$ to 1.0mA $500\Omega:0.1$ to 0.7mA1000Ω:0.1 bis 0.3mA (self heating has to be considered) Application advice 1. To avoid shear forces on the connection area, the connection wires may be neither split or bent. The bending may only take place 3 mm after the element, using a bending or splitting tool. 2. Other nominal values, lengths and temperature coefficients on request. 3. Due to a production-caused oxide layer coating

We reserve the right to make alterations and technical data printed. All technical data serves as a guideline and does not guarantee particular properties to any products.

Other tolerances, values of resistance are available

the leads, soft-soldering is restricted.

on request.

Note

Platinum Temperature Sensor in Thin Film Technology

MN 420

M series platinum temperature sensors are characterized by long-term stability, precision over a broad temperature range and compatibility. They are used in particular for applications with high consumption volumes, typically in the automotive, white goods, ventilation, heating and energy generation sectors as well as in medical and industrial equipment. The type of connection technology facilitates the construction of elements with leads up to 200 mm in length.

Nominal Resistance R0	Tolerance DIN EN 60751 1996-07	Tolerance DIN EN 60751 2009-05	L±1mm	Order Number Plastic Bag
100 Ohm at 0°C	Class 2B	F 0.6	150 mm	32 207 620
1000 Ohm at 0°C	Class B	F 0.3	75 mm	32 207 635

The measuring point for the nominal resistance is defined at 8mm from the end of the sensor body.

Specification DIN EN 60751

Temperature range -70°C to +500°C (continuous operation)

(temporary use to 550°C possible)
Tolerance Class B: -70°C up to +500°C

Temperature coefficient TC = 3850 ppm/K

Leads Ni- leads

Recommend connection technology:

Welding, Crimping and Brazing

Lead lengths (L) 10mm ±1mm

Ambient conditions Unhoused for dry environments only

Insulation resistance > 100 M Ω at 20°C; > 2 M Ω at 500°C

Connection resistance 1.3 m Ω /mm

Self heating 0.3 K/mW at 0°C

Response time Moving water (v= 0.4m/s): $t_{0.5} = 0.07$ s

 $t_{0.9} = 0.20s$ Air flow (v= 2m/s) $t_{0.5} = 3.2s$

 $t_{0.9} = 11s$

Measuring current 100Ω : 0.3 to 1.0mA

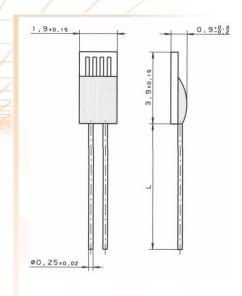
1000Ω: 0.1 to 0.3mA

(self heating has to be considered)

Application advice 1. To avoid shear forces on the connection area,

the connection wires may be neither split or bent. The bending may only take place 3 mm after the element, using a bending or splitting tool.

2. Other nominal values, lengths and temperature


coefficients on request.

3. Due to a production-caused oxide layer coating

the leads, soft-soldering is restricted.

Note Other tolerances, values of resistance are available

on request

